Home | english  | Impressum | Datenschutz | Sitemap | KIT

CFD in der Energietechnik

CFD in der Energietechnik
Typ: Vorlesung (V) Links:
Semester: SS 2018
Zeit: 19.04.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2


26.04.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

03.05.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

17.05.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

24.05.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

07.06.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

14.06.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

21.06.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

28.06.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

05.07.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

12.07.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2

19.07.2018
09:45 - 11:15 wöchentlich
20.30 SR -1.012 (UG) 20.30 Kollegiengebäude Mathematik, Englerstr. 2


Dozent: Dr. Ivan Otic
SWS: 2
LVNr.: 2130910

Course Description:

The course is aimed of giving the fundamental of Computational Fluid Dynamics (CFD) for energy
technologies. Computational techniques for solving Navier-Stokes and Energy equations with emphasis on turbulent heat and mass transfer are introduced. Finite volume method and solution of systems of
linear algebraic equations are discussed. Error control, accuracy and stability are discussed and demonstrated. Reynolds-Averaged-Navier-Stokes (RANS) equations and computation of turbulent flows are discussed and demonstrated. Explicit vs. implicit time stepping methods. The course consists of both a theoretical and a practical component. The former will deal with the derivations and properties of the methods and models for CFD. The practical part will make use of open source CFD computer program OpenFOAM to give a ”hands on” insight into the simulation of turbulent flows.

Prerequisites:
Undergraduate numerical analysis. Graduate-level fluid mechanics. Basic computer skills (C++, Python)

Course Objectives:
At the completion of this course, students

  • are able to understand fundamentals of non-linear partial differential equations.
  • get working knowledge of computational techniques that can be used for solving engineering heat and mass transfer problems
  • are able to understand fundamentals of statistical fluid mechanics and to derive RANS transport equations
  • have learned how to computationally solve turbulent heat and mass transfer problems using Open-FOAM software
  • are able to present their results in form of technical report

CFD Project:

  • Part of this class is performing CFD simulations of turbulent heat and mass transfer using open-source CFD software OpenFOAM.
  • After CFD analysis is completed students have to write a technical report.
  • Projects are to be performed individually or in teams of two but every student writes his own report.
  • The CFD analysis technical report is part of the final examination.


Reference texts:

  • Lecture Notes (Presentation slides)
  • Project tutorial
  • Simulation files required to perform the project
  • Report example